Role of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray.

نویسندگان

  • Luciana C Oliveira
  • Manoel J Nobre
  • Marcus L Brandão
  • Jesus Landeira-Fernandez
چکیده

The amygdala and ventral portion of the periaqueductal gray (vPAG) are crucial for the expression of the contextual freezing behavior. However, it is still unclear whether the amygdala also plays a role in defensive behaviors induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into dPAG for determination of the thresholds for freezing and escape responses before and after sham or electrolytic lesions in the amygdala. Animals were then submitted to a context fear conditioning procedure. Amygdala lesions disrupted contextual freezing but did not affect defensive behaviors induced by dPAG electrical stimulation. These results indicate that contextual and unconditioned freezing behaviors are mediated by independent neural circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning.

Four experiments studied the role of opioid receptors in the midbrain periaqueductal gray matter (PAG), an important structure eliciting conditioned fear responses, in the extinction of Pavlovian fear. Rats received pairings of an auditory conditioned stimulus (CS) with a foot shock unconditioned stimulus (US). The freezing conditioned response (CR) elicited by the CS was then extinguished via ...

متن کامل

Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans.

The endogenous opioid system is involved in fear learning in rodents, as opioid agonists attenuate and opioid antagonists facilitate the acquisition of conditioned fear. It has been suggested that an opioidergic signal, which is engaged through conditioning and acts inhibitory on unconditioned stimulus input, is the source of these effects. To clarify whether blockade of endogenous opioid neuro...

متن کامل

New vistas on amygdala networks in conditioned fear.

It is currently believed that the acquisition of classically conditioned fear involves potentiation of conditioned thalamic inputs in the lateral amygdala (LA). In turn, LA cells would excite more neurons in the central nucleus (CE) that, via their projections to the brain stem and hypothalamus, evoke fear responses. However, LA neurons do not directly contact brain stem-projecting CE neurons. ...

متن کامل

Gabaergic mechanisms of anterior and ventromedial hypothalamic nuclei in the expression of freezing in response to a light conditioned stimulus

The amygdala, dorsal periaqueductal gray (dPAG), and medial hypothalamus have long been recognized to comprise a neural system responsible for the generation and elaboration of unconditioned fear in the brain. This neural substrate is well known to be under tonic inhibitory control exerted by γ-aminobutyric acid (GABA) mechanisms. Some evidence also suggests that these structures integrate cond...

متن کامل

Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.

Electrical stimulation of the dorsal regions of the periaqueductal gray (PAG) leads to defensive reactions characterized as freezing and escape responses. Until recently it was thought that this freezing behavior could be due to the recruitment of neural circuits in the ventrolateral periaqueductal gray (vlPAG), while escape would be mediated by other pathways. Nowadays, this view has been chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroreport

دوره 15 14  شماره 

صفحات  -

تاریخ انتشار 2004